
Chapter 10 A Prototype COncurrent Designer’s Assistant

In the preceding seven chapters of this dissertation, a knowledge-based method is

proposed and then specified to provide software designers with automated assistance

when concurrent designs must be generated from data/control flow diagrams. In addition

to proposing and specifying this knowledge-based method, the research associated with

this dissertation includes a prototype COconcurrent Designer’s Assistant, briefly, CODA,

in order to achieve the following objectives:

To assess the feasibility of the proposed approach,

To evaluate the specifications for the meta-models, the design rules, and the design

meta-knowledge, and

To determine strengths and weaknesses of the proposed approach.

To address these objectives, CODA is applied to four concurrent-design problems, as

reported in Appendices B, C, D, and E. The main purpose of the current chapter is to

describe CODA. The description addresses four topics. First, CODA’s software

architecture is described and related to the conceptual architecture introduced and

discussed previously in Chapter 3. Second, the knowledge representation techniques

used to implement CODA are explained. Third, the components of CODA’s software

architecture are described. Fourth, CODA is presented from the user’s viewpoint. Two

types of users are considered: the novice designer and the experienced designer.

10.1 Software Architecture for CODA

The prototype, CODA, embodies a software architecture, as shown in Figure 29.

In the figure, rectangles represent components of CODA’s software architecture; disk

symbols represent external repositories of information and knowledge; data store symbols

depict loaded instances of the various meta-models; solid, directed arcs indicate flows of

data among CODA’s components, data repositories, and computer memory; dashed,

directed arcs denote the flow of control without associated data; combined, dashed and

solid, directed arcs signify the flow of control with associated data.

The components of CODA’s software architecture differ from the elements of the

conceptual architecture proposed in Chapter 3 (see Figure 1). These differences reflect

packaging decisions made when translating elements from the conceptual architecture

into implementation constructs supported by a specific expert system shell, CLIPS,

Version 6.0. [NASA93] The components of CODA’s software architecture can be mapped,

however, to and from elements of the conceptual architecture. Table 6 provides such a

mapping.

305

306

C
om

m
an

d
&

Q
ue

ry
P

ro
ce

ss
or

T
ar

ge
t

E
nv

iro
nm

en
t

D
es

cr
ip

tio
n

Lo
ad

er

D
es

ig
n

G
en

er
at

or
S

pe
ci

fic
at

io
n

A
na

ly
ze

r

C
on

ce
pt

C
la

ss
ifi

er

D
ec

is
io

n-
M

ak
in

g
P

ro
ce

ss
es

.

.

.

C
la

ss
ifi

ca
tio

n
R

ul
es

S
pe

ci
fic

at
io

n
Li

br
ar

y

N
ot

ic
es

D
es

ig
n

Li
br

ar
y

D
es

ig
n-

D
ec

is
io

n
R

ul
es

T
ar

ge
t

E
nv

iro
nm

en
t

D
es

cr
ip

tio
n

Li
br

ar
y

D
es

ig
ne

r
In

pu
t

D
es

ig
n

G
en

er
at

or
O

ut
pu

t

In
fo

rm
at

io
n

R
eq

ue
st

s
&

D
es

ig
n

S
ta

te

C
om

m
an

ds
,

Q
ue

rie
s,

 &
D

es
ig

n
In

fo
rm

at
on

S
pe

ci
fic

at
io

n
S

ta
teS

pe
ci

fic
at

io
n

S
ta

te
D

es
ig

n
S

ta
te

D
es

ig
n

S
ta

te

T
E

D
S

ta
te

T
E

D
S

ta
te

S
pe

ci
fic

at
io

n
S

ta
te

D
es

ig
n

S
ta

te

T
E

D
S

ta
te

S
pe

ci
fic

at
io

n
S

ta
te

D
es

ig
n

R
ul

es

 &
D

ec
is

io
n-

M
ak

in
g

P
ro

ce
ss

 C
on

tr
ol

C
la

ss
ifi

ca
tio

n
R

ul
es

 &

C
la

ss
ifi

ca
tio

n
P

ro
ce

ss
C

on
tr

ol

D
es

ig
n

M
an

ag
em

en
t

C
om

m
an

ds

S
pe

ci
fic

at
io

n
M

an
ag

em
en

t
C

om
m

an
ds

T
E

D
M

an
ag

em
en

t
C

om
m

an
ds

In
st

an
ce

 o
f

S
pe

ci
fic

at
io

n
M

et
a-

M
od

el

In
st

an
ce

 o
f

D
es

ig
n

M
et

a-
M

od
el

In
st

an
ce

 o
f

T
ar

ge
t-

E
nv

iro
nm

en
t

D
es

cr
ip

tio
n

Figure 29. Software Architecture for Prototype COconcurrent Designer’s Assistant

Table 6. Mapping Conceptual Architecture to Prototype Software Architecture

Conceptual Architecture Component

Prototype Software Component(s)

Design Process Meta-Knowledge
Command & Query Processor
Specification Analyzer
Design Generator

User Interface Meta-Knowledge Command & Query Processor

Specification Analysis, Inference, and
 Elicitation Knowledge

Specification Analyzer
Concept Classifier
Classification Rules

Design Generation Knowledge
Design Generator
Decision-Making Processes
Design-Decision Rules

Specification Meta-Model Instance of Specification Meta-Model

Design Meta-Model Instance of Design Meta-Model

Target Environment Description
 Meta-Model

Instance of Target Environment
 Description

User Interface Knowledge Command & Query Processor

Target Environment Elicitation Knowledge Off-Line Editor

Specification Model Instances Specification Library

Design Model Instances Design Library

Target Environment Description Model
 Instances

Target Environment Description Library

 CODA distributes Design Process and User Interface Meta-knowledge among

three software components: the Command & Query Processor, the Specification

Analyzer, and the Design Generator. CODA implements User-Interface Knowledge

mainly in the Command & Query Processor. CODA splits the Specification Analysis,

Inference, and Elicitation Knowledge among three software components: the

307

Specification Analyzer, the Concept Classifier, and the Classification Rules. Similarly,

CODA distributes Design-Generation Knowledge among the Design Generator, the

Decision-Making Processes, and the Design-Decision Rules. CODA implements the

Specification Meta-Model, the Design Meta-Model, and the Target Environment

Description Meta-Model as meta-data for describing instances of specifications, designs,

and target environment descriptions. Such instances may be loaded into CODA’s

memory, but otherwise reside in the appropriate library. CODA does not directly support

the Target Environment Description Elicitation Knowledge. Instead, the designer can

create and store target environment descriptions off-line, using a text editor.

10.2 Knowledge Representation

The prototype CODA is implemented using an expert system shell, the C

Language Integrated Production System, or CLIPS, Version 6.0. [NASA93] CLIPS

provides numerous techniques for representing knowledge, including:

production rules for representing heuristic knowledge,

an object-oriented query language for representing constraints and axiomatic

knowledge,

specific and generic functions and a procedural programming language for

representing control knowledge,

modules for bounding the scope of knowledge,

a complete object-oriented language, and

308

several forms for representing facts, including unstructured and structured facts and

object-oriented data models.

Most of these knowledge representation techniques are used in the prototype to

implement aspects of the knowledge specified in Chapters 4 through 9.

10.2.1 Specification Meta-Model

Consider first the knowledge representation implemented for the Specification

Meta-Model, described in Chapter 4 and Appendix A. Table 7 presents the essential

mappings.

Table 7. Knowledge Representation for the Specification Meta-Model

Specification Meta-Model Component Knowledge-based Representation

Concept Object Class

Concept Hierarchy Class-Inheritance Hierarchy

Concept Axiom Class-Query Specification

Classification Checking Class Method and Subclass Checking

Axiom Checking Class Method and Class-Query Evaluation

Concept Classification Class-based Expert-System Rules

Information Elicitation Procedure within a Function

309

CODA represents the Specification Meta-Model as a semantic data model

containing two major components: concepts and concept relationships. Each concept is

represented as an object class. Two types of concept relationships exist. CODA

expresses one type, classification relationships, through a class-inheritance hierarchy.

CODA expresses the second type, axiomatic relationships, as concept axioms, where each

axiom is represented with a specification for a class query.

The Specification Meta-Model facilitates four forms of analysis, where each form

is implemented using knowledge representation techniques available in CLIPS, Version

6.0. One form of analysis, classification checking, enables an instance of a concept to

determine if it is a leaf within the concept hierarchy. Classification checking is

implemented using a class method, known in CLIPS as a message handler, assigned to

the object class that represents the concept Specification Element. This method is

inherited by any concept in the concept hierarchy that inherits the concept Specification

Element. The method simply determines whether or not the instance of the concept has

any subclasses. If not, then the concept is a leaf within the concept hierarchy. A second

form of analysis, axiom checking, enables an instance of a concept to determine if all

axioms appropriate to the concept are satisfied. Axiom checking is implemented using a

class method assigned to each concept. The class method evaluates each query

specification that represents an axiom applicable to the concept. If all applicable query

specifications are satisfied for a given instance of a concept, and for all of its parents in

the concept hierarchy, then the axiomatic relationships described for that concept instance

310

are valid. A query specification is implemented for each of the axioms specified in

Appendix A.1. A third form of analysis, concept classification, enables a concept

instance to be classified more specifically within the concept hierarchy. Concept

classification is implemented using class-based, expert-system rules. One rule is defined

for each situation where a more specific concept can be inferred to replace an existing but

more general concept. An expert-system rule is implemented for each of the

classification rules specified in Appendix A.2. The classification rules are packaged into

a four-stage, inference network that composes the Concept Classifier described in

Chapter 4. A fourth form of analysis, information elicitation, determines where

additional information is required or desired in order to make subsequent design

decisions. The designer is forced to supply any missing but required information. The

designer is also shown where additional information might be desirable and is given an

opportunity to supply it. Elicitation of each category of missing information is

represented as a function containing a procedural algorithm within it. The categories of

elicitation include: timer periods, maximum rates, exclusion groups, aggregation groups,

locked-state events, and cardinalities.

10.2.2 Design Meta-Model

Another major component of CODA provides a means for representing concurrent

designs and target-environment descriptions. CODA implements the Design Meta-Model

specified in Chapter 5. Table 8 shows the essential mappings between elements of the

Design Meta-Model and corresponding knowledge-based representations used in CODA.

311

The design meta-model is defined via an entity-relationship, or E-R, diagram

containing two major components: design entities and relationships. CODA represents

each design entity as an object class. Two types of relationships exist. CODA represents

one type, inheritance relationships, through a class-inheritance hierarchy. CODA

expresses each instance of the second type, arbitrary design relationships in the E-R

diagram, as an object class.

Table 8. Knowledge Representation for the Design Meta-Model

Design Meta-Model Component Knowledge-based Representation

Design Entity Object Class

Design-Entity Hierarchy Class-Inheritance Hierarchy

Design Relationship Object Class

Design Constraint Class Method and Class-Query Specification

Design Guideline Class Attribute

Target-Environment Characteristic Class Attribute

Where a design relationship requires constraints those constraints are represented

using two approaches. Constraints restricting the types of entities that may be involved

within a design relationship are represented with class methods, where each design

312

relationship can have a class method defined that enforces the applicable constraints.

Constraints describing a consistent and complete design are represented using class-query

specifications that are contained within a function. To determine whether or not a given

instance of a design meets the consistency and completeness constraints, the specified

queries can be evaluated using a call to the appropriate function.

The remaining components of the Design Meta-Model describe characteristics of

target environments and design guidelines. A single object class represents the collection

of relevant characteristics and guidelines. Each characteristic and each guideline is

represented as a class attribute within the object class.

10.2.3 Decision-Making Processes and Design-Decision Rules

Each of the Chapters 6 through 9 identifies a series of decision-making processes

that compose a specific phase in the design-generation process. For each

decision-making process a set of design-decision rules is specified. CODA contains

knowledge representations for both decision-making processes and for design-decision

rules. Each decision-making process is represented as a CLIPS module. A CLIPS

module can be used to bound the scope of rule sets tagged as belonging to the module.

CLIPS then allows the focus of decision-making activity to be moved from module to

module. Rules defined as belonging to a module are applicable only when the focus of

decision-making activity is the module to which the rules belong. The design-decision

rules themselves are represented as CLIPS rules. A CLIPS rule exists for each rule

313

specified within Chapters 6 through 9. Each rule is tagged as belonging to a module that

corresponds to the decision-making process that contains the rule.

10.2.4 Meta-Knowledge

CODA represents meta-knowledge, which controls the analysis of specifications

and the generation of designs, in several different forms, depending upon the purpose of

the meta-knowledge. The discussion that follows refers to Table 9.

Table 9. Representations for Meta-Knowledge

Meta-Knowledge Component Knowledge-based Representation

Specification Analyzer Object Class

Specification-Analysis Phase Class Method and External Function

Ordering Specification-Analysis Phases Procedure within an External Function

Design Generator Object Class

Design-Generation Phase Class Method and External Function

Ordering Design-Generation Phases Procedure within an External Function

Ordering Decision-making Processes Procedure within a Class Method

Each of the two major activities, specification analysis and design generation,

required to transform an input specification into a concurrent design, is represented as an

314

object class, the Specification Analyzer and the Design Generator, respectively. Each

phase of specification analysis, that is, conditioning the specification, checking

classifications, and checking axioms, is represented with a class method in the

Specification Analyzer. In addition, an external function is also used to represent each

phase of specification analysis. Each external function contains procedural knowledge

that prevents improper invocation of the specification-analysis phase that is represented

by the function. In effect, each external function checks the ordering constraints for its

corresponding class method in the Specification Analyzer. Each phase in the process is

represented redundantly with both an external function and a class method in order to

provide a convenient means for an experienced designer to invoke a process phase. The

syntax for invoking CLIPS functions is more succinct than the syntax for invoking

methods within CLIPS object classes. The same approach is used to represent the

meta-knowledge that constrains the order of the phases composing the design generation

process, that is, structuring tasks, defining task interfaces, structuring modules, and

integrating tasks and modules. The remaining form of meta-knowledge orders the

invocation of decision-making processes within each phase of design generation. The

ordering of decision-making processes is represented as procedural knowledge encoded

within each class method that corresponds to a design-generation phase.

315

10.3 CODA’s Components

The next few sections provide a description of the responsibilities held by the key

components in CODA’s software architecture. Refer back to Figure 29 for a

diagrammatic view of the relationships among the various components.

10.3.1 Command & Query Processor

The Command & Query Processor provides the means for a designer to interact

with CODA. An experienced designer can issue either commands, which can cause the

state of the CODA to change, or queries, which can report on, but not change, the state of

the CODA. The Command & Query Processor ensures that appropriate ordering

constraints are satisfied before passing each command on to the appropriate component,

that is, the Specification Analyzer, the Design Generator, or the Target Environment

Description Loader, for execution. In general, the Command & Query Processor

executes queries by examining directly the in-memory state of a specification instance, a

design instance, and a target environment description instance, where only one instance

of each type can exist in memory at a given time.

10.3.2 Specification Library and Specification Analyzer

The Specification Library, created using a process external to CODA, provides a

repository of specification instances, where each instance represents a data/control flow

diagram, augmented with any additional information. At present, specification instances

are created and added to the library using a text editor. A program could be created to

generate specifications by extracting relevant data from repositories associated with

316

computer-aided software engineering (CASE) tools that enable data/control flow

diagrams to be represented. Specifications within the library are updated as a result of

specification analysis.

The Specification Analyzer executes commands to move specification instances

between computer memory and the Specification Library, to check properties of loaded

specifications, to load classification rules, and to control the process for classifying

specification concepts. When a specification is analyzed, each concept classification,

axiom violation, and classification deficiency, as well as, any information elicited from

the user, is logged to a file, Notices.

10.3.3 Concept Classifier and Classification Rules

The Concept Classifier, when asked by the Specification Analyzer, attempts to

classify concepts for a loaded specification in accordance with the Specification

Meta-Model described in Chapter 4. The Classification Rules, encoded as expert-system

rules, are included as an integral part of CODA.

10.3.4 Design Library and Design Generator

The Design Library, updated by CODA as designs are generated, provides a

repository of designs hierarchically organized by the specification from which a design

originated and then by the target environment for which that design is intended. The

Design Library, then, provides a tree structure for locating generated designs.

The Design Generator executes commands to move design instances between

computer memory and the Design Library, to initiate each design phase, to manage the

317

decision-making processes that compose each design phase, and to load the

design-decision rules associated with each decision-making process. Each

decision-making process executes a set of design-decision rules that update the state of

the design as required, based on an examination of the current specification, the target

environment description, and the evolving design. The Design-Decision Rules, encoded

as expert-system rules, are included as an integral part of CODA.

10.3.5 Target Environment Description Library and Loader

The Target Environment Description Library provides a repository of target

environment descriptions known to CODA. With the current prototype CODA, Target

Environment Descriptions are created and added to the library using a text editor. The

prototype could be extended easily to allow Target Environment Descriptions to be

created and added to the library without resorting to an external editor. The Target

Environment Description Loader executes a command that loads a requested Target

Environment Description from the library.

10.3.6 Hardware and Software Requirements for the Prototype

CODA is implemented to execute under Windows 3.1 and under UNIX, but

requires access to a run-time environment for CLIPS, Version 6.0, or later The prototype

is known to execute on an Intel 486 computer system and on a Sun Sparcstation 2.

10.4 User’s View of CODA

The current prototype CODA relies upon a rather crude text dialog interface with

the designer. CODA’s power could be better exploited by providing a graphical user

318

interface that works directly on pictures of data/control flow diagrams and concurrent

designs. The startup dialog for CODA is shown in Figure 30. After an explanation of the

purpose of CODA, the designer is given a chance to exit. If the designer opts to continue,

then CODA asks about the designer’s level of experience because some design decisions

are taken only after consultation when an experienced designer is available, but are taken

without consultation when an experienced designer is unavailable. In addition, the

manner in which CODA proceeds to generate designs depends upon whether or not the

designer professes to be experienced.

10.4.1 CODA Viewed by a Novice Designer

Should the designer profess to be inexperienced, CODA leads the designer

through the steps necessary to analyze a data/control flow diagram and, subsequently, to

generate a concurrent design. First, the designer is shown the data/control flow diagrams

that exist in CODA’s Specification Library. The designer must select one of those

specifications. Next, the designer is shown the list of target environment descriptions

known to CODA and is asked to select one. Once the input specification and the target

environment are known, CODA attempts to classify the concepts in the specification and

then elicits any additional information that is required from the designer. The designer is

also given opportunities to provide any additional information that can help CODA

improve its decision-making. After classifying concepts in the input specification,

CODA checks each concept to ensure it is fully classified and that all applicable axioms

are satisfied. Failing this, the designer is asked to repair the errors in the specification

319

320

 WELCOME TO CODA

The COncurrent Designer’s Assistant, or CODA, is
an experimental program that embodies knowledge
about generating concurrent designs from input
specifications in the form of data/control flow
diagrams. This design knowledge is based on a
restricted form of RTSA, known as COBRA, and on
a design method known as CODARTS. The knowledge
within CODA is represented using Semantic Data
Modeling and Rule-based Expert Systems.

Do you wish to use CODA?

 1. Yes
 2. No

Please select a number?
1

CODA consults experienced designers where
necessary to make certain design judgments.
In addition, CODA relies upon experienced
designers to direct the design process. For
inexperienced designers, CODA takes certain
design decisions by default. In addition,
CODA leads inexperienced designers through
the design process.

What is your level of experience at designing
concurrent software?

 1. Experienced Designer
 2. Inexperienced Designer

Please select a number? 1

The design generator operates through a set of
commands and queries. A command initiates some
operation within the design generator. A query
lists some aspect of the current input specification,
target environment description, or evolving design.

Each command and query must be enclosed in parentheses.

(commands) -- lists the available commands

Figure 30. CODA Startup Dialog

and CODA terminates. If the specification analysis succeeds, then the designer is asked

whether to save the updated specification before proceeding with design generation.

Given a proper specification, CODA next initiates design generation. Tasks are

structured and then task interfaces are defined. Next, modules are structured and the task

and module views of the design are integrated. Once the design exists, CODA writes task

behavior specifications, module specifications, and task and module design histories into

the design library. Next, CODA checks the generated design for completeness and

consistency, recording the results in a design summary. Finally, the designer is given an

opportunity to save the updated specification and generated design into the Specification

Library and Design Library, respectively.

10.4.2 CODA Viewed by an Experienced Designer

An experienced designer might prefer to generate and review designs a little at a

time. In this way, intermediate steps can be discarded should the designer be dissatisfied

with the results. Alternatively, the designer might wish to save a partial design for reuse

later, perhaps when the design must be moved to an alternate target environment. For

these reasons, and because an experienced designer understands the design process,

CODA relies upon an experienced designer to access commands and queries interactively

on demand. At startup, CODA shows the experienced designer how to access the list of

commands and queries.

321

10.4.2.1 CODA Commands

The list of commands provided by CODA is shown in Figure 31. Each command

listed in Figure 31 is implemented as a CLIPS function. Checking for ordering

constraints is built into each command so that the command will not execute unless the

appropriate constraints are satisfied. Violations of ordering constraints are referred to the

designer. Corrective action usually requires invoking another command. An example is

illustrated in Figure 32.

10.4.2.1.1 CODA Enforces Process Constraints

In the example, the state command is executed to reveal that no specification or

target environment description is loaded and that no design is in progress. Subsequently,

an attempt is made to execute three commands, check-axioms, check-classes, and

condition-spec, each of which analyze some aspect of an input specification. As shown

in Figure 32, each command is rebuffed because no specification is loaded. To correct

the problem, the designer needs to load a specification before beginning the analysis.

Similar checking is built into each command as necessary to represent the Design-Process

Meta-Knowledge. When the ordering constraints for a command are satisfied, the

command is referred to the appropriate CODA component, that is, the Specification

Analyzer, Design Generator, or Target Environment Description Loader, for execution.

322

323

CLIPS> (commands)

(check-axioms) : Checks axioms for loaded specification
(check-classes) : Checks classifications for loaded specification
(checkpoint) : Saves current state of design and specification
(condition-spec) : Classifies loaded specification and then
 elicits needed and desired information
(configure-design) : Configures design for the target environment
(define-task-interfaces) : Generates interfaces for tasks in the design
(evaluate-design) : Checks the design against axioms
(forget-design) : Delete the current design from memory
(forget-spec) : Delete the current specification from memory
(forget-ted) : Delete the current target environment from memory
(integrate) : Integrates the task and module views of the design
(list-specs) : Lists the known specifications
(list-teds) : Lists the known target environments
(load-spec ?name) : Loads the named specification, ERASES DESIGN
(load-ted ?name) : Loads the named target environment, ERASES DESIGN
(restore-design) : Loads the last saved state of the current design
(save-spec) : Saves the current specification
(state) : Reports the current state of the design generator
(structure-ihms) : Generates a module structure
(structure-tasks) : Generates a task structure
(write-design) : Writes task behavior specs., module specs., and
 task and module design histories to disk.

Figure 31. CODA Commands Available to an Experienced Designer

10.4.2.1.2 CODA Manages Libraries

A number of commands help to move elements between the various libraries and

computer memory. The list-specs and list-teds commands provide a list of the contents

of the Specification Library and Target Environment Description Library, respectively.

The load-spec and load-ted commands move a named element from the appropriate

library into memory. The restore-design command moves any existing design for the

currently loaded specification and target environment description from the Design

324

CLIPS> (state)

Specification Loaded: None
 Conditioning: Unknown
 Classification: Unchecked
 Axioms: Unevaluated

TED Loaded: None

No Design In Progress

CLIPS> (check-axioms)
No Specification Loaded
CLIPS> (check-classes)
No Specification Loaded
CLIPS> (condition-spec)
No Specification Loaded
CLIPS>

Figure 32. Attempt to Analyze a Specification Before a Specification is Loaded

Library into memory. The state command lists the status of any loaded specification,

target environment description, and design. Three commands, forget-spec, forget-ted,

and forget-design, erase any currently loaded specification, target environment

description, and design, respectively, from computer memory. The save-spec command

copies the currently loaded specification to the Specification Library. The checkpoint

command copies both the currently loaded specification and the evolving design to the

Specification Library and the Design Library, respectively.

10.4.2.1.3 CODA Analyzes Specifications

A second group of commands control the analysis, classification, and elicitation

associated with an input specification. The check-classes command determines whether

all concepts in an input specification are classified fully. Concepts lacking full

classification are recorded via entries in a file named Notices. The check-axioms

command determines whether or not each concept within an input specification satisfies

the relevant axioms for a concept of its declared type. Whenever a concept axiom is

violated then a notification is written to the Notices file. The condition-spec command

attempts to classify completely, in accordance with the Specification Meta-Model, all

concepts in an input specification. As each concept is classified, a notification is written

to the Notices file. In addition, the command identifies and elicits from the designer any

additional information necessary to make design decisions, or desired to improve the

quality of design decisions.

325

10.4.2.1.4 CODA Generates Designs

The remaining commands embody Design-Process Meta-Knowledge, described in

Chapter 3, and the Design-Generation Knowledge, discussed in detail in Chapters 6, 7, 8,

and 9. After checking that the appropriate ordering constraints are satisfied, the

structure-tasks command invokes the Task Structuring Knowledge base (see Chapter 6).

Similarly, the define-task-interfaces command ensures that a task structure exists and

then invokes the Task Interface Definition Knowledge base (see Chapter 7). The

structure-modules command, after enforcing required ordering constraints, turns control

over to the Module Structuring Knowledge base (see Chapter 8). The integrate

command, after ensuring that both a task and module structure exists, invokes the Task

and Module Integration Knowledge base (see Chapter 9). Another command,

write-design, generates task behavior specifications, module specifications, and task and

module design histories. These textual representations are written to the Design Library.

In addition, write-design checks the generated design for completeness, relative to the

input specification, and for consistency, relative to the Design Meta-Model. The results

of this completeness and consistency checking, along with an index of the tasks and

modules generated for the design, are written, as a design summary, into the Design

Library.

10.4.2.1.5 Unimplemented Commands

The two remaining commands, configure-design and evaluate-design, provide

placeholders for additional phases in the design-generation process. The configuration

326

and evaluation of designs is outside the scope of the research described in this

dissertation.

10.4.2.2 CODA Queries

In addition to commands for analyzing specifications and generating designs,

CODA provides the experienced designer with a set of canned queries that can reveal

interesting details about the state of the input specification and the evolving design.

Figure 33 lists the queries provided by the prototype CODA. Additional queries can

easily be defined, tested, and included in the available set.

10.4.2.2.1 General Information Queries

A few queries examine the input specification or provide general information.

Each entity in an input specification or a design is identified through a unique object

identifier. When given a valid object identifier, the tell query reveals the class and name

of an object, while the print query lists the class, the slots, and the slot values of an

object. When given a valid specification-element type, the any query lists all instances of

elements of that type within an input specification, while the count query reports the

number of instances of elements of that type within an input specification.

10.4.2.2.2 Querying Design Elements

Most of the queries are aimed at the evolving design or at revealing connections

between the input specification and the evolving design. The queries tasks, ihms, data,

events, and messages print a list of the elements of the appropriate type in the evolving

design. The query no-tasks lists all transformations in an input specification that are not

327

allocated to a task. Similarly, the query no-ihm lists all transformations and data stores

in an input specification that are not allocated to a module. The query no-placement

identifies modules in a design that have not been placed relative to the tasks in a design.

The query unallocated lists every specification element that is not allocated in the

evolving design.

328

CLIPS> (queries)

(any ?type) : Specification elements of type
(count ?type) : Counts specification elements of type
(data) : List of data inputs/outputs in design
(events) : List of events in the design
(explain ?de) : Rationale for design element
(ihms) : IHMs in design
(inverses ?de) : Inverse relationships for design element
(invert ?de ?type) : Invert design relationships of type
 for design element
(links ?de) : Relationships for design element
(list ?de ?type) : Relationships of type for design element
(messages) : List of messages in the design
(no-ihm) : Elements unallocated to an IHM
(no-placement) : IHMs unplaced relative to the tasks
(no-tasks) : Elements unallocated to a task
(print ?obj) : Print slots for object
(tasks) : Tasks in design
(tell ?obj) : Class and Name for object
(traces-from ?de) : Specification elements leading to
 the input design element
(traces-to ?se) : Design elements resulting from
 the input specification element
(unallocated) : Specification elements not allocated to
 the design

Figure 33. CODA Queries Provided for Experienced Designers

10.4.2.2.3 Querying Design Histories

When given the object identifier of a design element, the query explain prints the

design history for the design element. A design history consists of a list of decision

records, where each decision record includes the rule that made the decision, the action

taken, and the rationale for the decision.

10.4.2.2.4 Querying Design Relationships

A number of queries reveal relationships among elements in a design. In effect,

these queries allow a designer to navigate the relationships defined in the E-R model for

concurrent designs. Given a valid object identifier for a design element, the links query

lists all design relationships that involve the design element as either a subject or object.

For example, a design element, Message, as an object, might be sent and received by two

different tasks and, as a subject, might include a Message Data field. The links query

would reveal all three of these relationships involving the Message. A more limited

query, inverses, lists only the relationships in which a design element is the object.

Using the previous example of the Message, the inverses query would reveal only the

relationships that show that the message is sent and received by two tasks. To examine

relationships of a selected type in which a design element is involved, the list query can

be used. For example, list oid Send, would list all instances of the Send relationship

involving the design element identified by the object identifier, oid. To reveal

relationships of a selected type in which a design element is the object only, the invert

query can be used.

329

The remaining queries reveal relationships between elements in the design and

elements in the specification. When given the object identifier for a valid design element,

the query traces-from lists all the specification elements that are allocated to the design

element. Just the reverse, when given the object identifier for a valid specification

element, the query traces-to lists all the design elements to which the specification

element is allocated.

330

